Nanooxide/Polymer Composites with Silica@PDMS and Ceria–Zirconia–Silica@PDMS: Textural, Morphological, and Hydrophilic/Hydrophobic Features

نویسندگان

  • Iryna Sulym
  • Olena Goncharuk
  • Dariusz Sternik
  • Konrad Terpilowski
  • Anna Derylo-Marczewska
  • Mykola V. Borysenko
  • Vladimir M. Gun’ko
چکیده

SiO2@PDMS and CeO2-ZrO2-SiO2@PDMS nanocomposites were prepared and studied using nitrogen adsorption-desorption, Fourier transform infrared spectroscopy (FT-IR), scanning electron microscopy (SEM), measurements of advancing and receding contact angles with water, and microcalorimetry. The pore size distributions indicate that the textural characteristics change after oxide modification by poly(dimethylsiloxane) (PDMS). Composites are characterized by mainly mesoporosity and macroporosity of aggregates of oxide nanoparticles or oxide@PDMS nanoparticles and their agglomerates. The FT-IR spectra show that PDMS molecules cover well the oxide surface, since the intensity of the band of free silanols at 3748 cm-1 decreases with increasing PDMS concentration and it is absent in the IR spectrum at C PDMS ≥ 20 wt% that occurs due to the hydrogen bonding of the PDMS molecules to the surface hydroxyls. SEM images reveal that the inter-particle voids are gradually filled and aggregates are re-arranged and increase from 20 to 200 nm in size with the increasing polymer concentration. The highest hydrophobicity (contact angle θ = 140° at C PDMS = 20-40 wt%) is obtained for the CeO2-ZrO2-SiO2@PDMS nanocomposites. The heat of composite immersion in water shows a tendency to decrease with increasing PDMS concentration.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Investigation of structural, morphological and dynamic mechanical properties of unvulcanized PDMS/silica compound

In this study, the interaction between the silica filler and polydimethylsiloxanes (PDMS) was investigated from the aspects of the bound rubber and morphological characterization. With special attention to the dynamic properties, the dynamic test was conducted by dynamic shear rheometer. The results show that the modified fillers disperse uniformly within PDMS matrix without aggregation and con...

متن کامل

Tensile Behaviour and Fracture Characteristics of Polydimethylsiloxane (PDMS) filled Silica Composites

The focus of this study is to investigate the mechanical properties and fracture behaviour of polydimethylsiloxane filled crystalline silica composites (PDMSJCS) via tensile test. The PDMSICS composites were fabricated by using casting method and cured at room temperature for 24 hours. Crystalline silica were filled into PDMS at composition of 2, 6, 10 wt%. The tensile properties of PDMS/2wt%CS...

متن کامل

Modeling of PDMS - Silica Nanocomposites

A hydrogen bonding pathway between polydimethylsiloxane (PDMS) and hydroxyl groups on a silica surface was studied using quantum chemistry calculations of disiloxane and hexamethyldisiloxane molecules with small silica clusters. A newly developed classical force field for PDMS was developed for atomistic molecular dynamics simulation studies of PDMS – silica nanocomposites to determine the effe...

متن کامل

SYNTHESIS AND CHARACTERIZATION OF AN ENVIRONMENTALLY-FRIENDLY HYBRID NANOCOMPOSITE COATING

In this research, a kind of environmentally-friendly inorganic-organic hybrid nanocomposite coating based on silica containing titania/silica core/shell nanoparticles was synthesized and characterized for conservation of facade tiles in historical buildings. The matrix of the composite was prepared by sol-gel process via two methods of ultrasonic and reflux stirring. Tetraethyl orthosilicate (T...

متن کامل

Silicone fouling-release coatings: effects of the molecular weight of poly(dimethylsiloxane) and tetraethyl orthosilicate on the magnitude of pseudobarnacle adhesion strength.

A series of poly(dimethyl siloxane) (PDMS)/silica nanocomposites were synthesized utilizing a sol gel method. The samples were evaluated using pseudobarnacle adhesion and tensile strength tests. The effects of the molecular weight of the PDMS and the size and structure of the silica domains on biofouling release and the mechanical behavior of the PDMS/silica materials were investigated. Three d...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره 12  شماره 

صفحات  -

تاریخ انتشار 2017